LETTERS

Foxo3a Inhibitors of Microbial Origin, JBIR-141 and JBIR-142

Teppei Kawahara,[†] Noritaka Kagaya,[‡] Yuichi Masuda,[§] Takayuki Doi,[§] Miho Izumikawa,[†] Kumiko Ohta,[⊥] Atsushi Hirao,[⊥] and Kazuo Shin-ya^{*,‡}

[†]Japan Biological Informatics Consortium (JBIC), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan

*National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan

[§]Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan

[⊥]Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan

(5) Supporting Information

ABSTRACT: JBIR-141 (1) and JBIR-142 (2) were discovered as potent Foxo3a inhibitors that consist of three quite unique substructures, a 1-((dimethylamino)ethyl)-5-methyl-4,5-dihydrooxazole-4-carboxylic acid that is originated from Ala-Thr amino acid residues, a 3-acetoxy-4-amino-7-(hydroxy(nitroso)amino)-2,2-dimethylheptanoic acid, and an α -acyl tetramic acid fused with a 2-methylpropan-1-ol moiety. Their structures involving absolute configurations were determined by spectroscopic data, chemical degradation, anisotropy methods, and LC-MS analyses of diastereomeric derivatives. Compounds 1 and 2 exhibited specific inhibition against Foxo3a transcriptional activity with IC₅₀ values of 23.1 and 166.2 nM, respectively.

he Foxo3a transcription factor belongs to the forkhead family of class O (Foxo) that plays an important role in energy metabolism, cell cycle arrest, apoptosis, antioxidation, and DNA repair by regulating target genes¹⁻⁴ or direct proteinprotein interactions.⁵ Although development of BCR-ABL tyrosine kinase inhibitors has significantly improved the therapy of chronic myeloid leukemia (CML), it is not absolutely conquered because a small population of cancer stem cells gives rise to drug resistance and CML recurrence.⁶ Recent studies proved that Foxo3a is critical for the survival and selfrenewal of hematopoietic stem cells⁷ and leukemia stem cells.^{8,9} In CML model mice, imatinib administration combined with Foxo3a ablation successfully reduced leukemia-initiating cells (LICs). In LICs, PI3K-Akt signaling, an upstream negative regulator of Foxo3a, is suppressed by TGF- β signaling, and activated Foxo3a works for stem cell maintenance in the nucleus.⁸ Depletion of Foxo3a could induce maturation of LICs and subsequent cell death.⁹ A highly malignant population of cancer stem cells has been reported to contain a large amount of β -catenin in the nucleus, which can change the function of transcription factors by binding to them. A complex of β -catenin and Foxo3a exerts this function on stem cell maintenance without inducing apoptosis.¹⁰ Because difficulties in the treatment of CML with imatinib are brought on by quiescent and undifferentiated cancer stem cells, Foxo3a is expected to be a promising target for eradicating CML stem cells.

During a screening program for Foxo3a inhibitors from our natural product library consisting of over 250000 samples,¹¹ two potent compounds, JBIR-141 (1) and JBIR-142 (2) (Figure 1),

were isolated from the culture broth of a soil-derived *Streptomyces* sp. 4587H4S (see the Supporting Information). Herein, the isolation, structure determination, and biological evaluation of **1** and **2** are presented.

JBIR-141 (1) was obtained as a colorless powder, having a molecular formula $C_{31}H_{50}N_6O_{11}$, determined by positive mode HRESIMS at m/z 683.3641 [M + H]⁺ (calcd for $C_{31}H_{51}N_6O_{11}$, 683.3616). The UV data displayed a peak absorption band at 243 and 288 nm, which suggested the presence of an α -acyl tetramic acid moiety. The IR spectrum exhibited absorption bands for hydroxy (3350 cm⁻¹), ester carbonyl (1733 and 1222 cm⁻¹), amide carbonyl (1616 cm⁻¹), and nitrosohydroxyamino (1457 cm⁻¹) groups.¹²⁻¹⁵

Received: October 1, 2015 Published: October 23, 2015 The appearance of several amide carbonyl carbon signals in the ¹³C NMR spectrum intimated the peptide-like nature of the molecule. The planar structure of 1 was mainly elucidated based on the analyses of DQF-COSY and CT-HMBC¹⁶ spectra (Figure 2 and Table S1).

Figure 2. Key correlations in DQF-COSY (bold lines) and CT-HMBC (arrows) spectra of JBIR-141 (1).

The ¹H sequence from an oxymethine proton H-3 ($\delta_{\rm H}$ 5.56, $\delta_{\rm C}$ 79.0) through a nitrogen-bonded methine proton H-4 ($\delta_{\rm H}$ 3.93, $\delta_{\rm C}$ 50.9), methylene protons H₂-5 ($\delta_{\rm H}$ 1.77, 1.26), and H₂-6 ($\delta_{\rm H}$ 1.75) to deshielded nitrogen-substituted methylene protons H₂-7 ($\delta_{\rm H}$ 3.95 and 3.90, $\delta_{\rm C}$ 57.5), together with HMBC correlations from singlet methyl protons H₃-8 ($\delta_{\rm H}$ 1.13) and H₃-9 ($\delta_{\rm H}$ 1.03) to an ester carbonyl carbon C-1 ($\delta_{\rm C}$ 172.2), a quaternary carbon C-2 ($\delta_{\rm C}$ 47.2), and an oxymethine carbon C-3 established the presence of a 4,7-diamino-3-hydroxy-2,2-dimethylheptanoic acid moiety. Additional HMBC correlations from H-3 and an acetic methyl proton H₃-11 ($\delta_{\rm H}$ 2.14) to a carbonyl carbon C-10 ($\delta_{\rm C}$ 172.2) indicate that an acetoxy group is located at C-3.

Methyl protons H₃-30 ($\delta_{\rm H}$ 1.05) and H₃-31 ($\delta_{\rm H}$ 1.06) were ¹H-¹³C long-range coupled to each other and commonly coupled to a methine carbon C-29 ($\delta_{\rm C}$ 33.1) and an oxymethine carbon C-28 ($\delta_{\rm C}$ 80.5). Additional ¹H-¹³C long-range couplings from an oxymethine proton H-28 ($\delta_{\rm H}$ 6.15) and a methine proton H-29 ($\delta_{\rm H}$ 2.18) to an $\alpha_{\eta}\beta$ -unsaturated carbonyl carbon C-27 ($\delta_{\rm C}$ 192.6) and from H-28 to the ester carbonyl carbon C-1 proved that a 2-hydroxy-3-methylbutanoic acid (valinic acid) residue is substituted at the position of C-1 through an ester bond.

The ¹H sequence from an α -methine proton H-13 ($\delta_{\rm H}$ 3.68, $\delta_{\rm C}$ 75.0) to methyl protons H₃-15 ($\delta_{\rm H}$ 1.11) through an oxymethine proton H-14 ($\delta_{\rm H}$ 4.90) and HMBC correlations between H-13 and an amide carbonyl carbon C-12 ($\delta_{\rm C}$ 172.2) predicted the presence of a threonine-like moiety. ¹H-¹³C long-range couplings from H-13 and H-14 to highly low-field shifted quaternary carbon C-16 ($\delta_{\rm C}$ 172.4) indicated a methyloxazoline residue, which was confirmed by acid hydrolysis vide infra.

HMBC couplings from methyl protons H₃-18 ($\delta_{\rm H}$ 1.34) to a nitrogen-bonded methine carbon C-17 ($\delta_{\rm C}$ 59.8) and C-16 and nitrogen-substituted *gem*-dimethyl protons H₃-19 ($\delta_{\rm H}$ 2.34) and H₃-20 ($\delta_{\rm H}$ 2.34) to the methine carbon C-17 established that a dimethylamino ethane moiety is substituted at the C-16 position. HMBC correlations from the methine proton H-4 to C-12 proved that a 1-((dimethylamino)ethyl)-5-methyl-4,5-dihydrooxazole-4-carboxylic acid substructure is substituted at C-4 through amide bond.

 ${}^{1}\text{H}^{-13}\text{C}$ long-range couplings from H₃-26 ($\delta_{\rm H}$ 1.25) to an oxygenated sp² carbon C-24 and a nitrogen-bearing methine carbon C-25 ($\delta_{\rm C}$ 62.4) and from an *N*-methyl proton H₃-21 ($\delta_{\rm H}$ 2.91, $\delta_{\rm C}$ 26.6) to an amide carbonyl carbon C-22 ($\delta_{\rm C}$ 173.9) and C-25 were observed. In addition to these HMBC correlations, the characteristic ${}^{13}\text{C}$ chemical shifts of $\delta_{\rm C}$ 190.1, 194.9, 174.2,

and 99.9, along with a characteristic UV absorption for tetramic acid chromophore (UV 288 nm), suggested that an α -acyl 1,5-dimethyltetramic acid moiety^{17,18} was connected to the valinic acid moiety.

The remaining one nitrogen and two oxygen atoms, calculated from the molecular formula, were allowed to be a nitrosohydroxyamino group at C-7 because of the specific IR absorption (1457 cm^{-1}). Hence, the planar structure of 1 was determined as shown in Figure 1.

The molecular formula of JBIR-142 (2) was determined as $C_{31}H_{50}N_6O_{12}$ on the basis of HRESI(+)MS, suggestive of an oxygenated derivative of 1. This difference was assigned as 6-OH in 2 by the analyses of 1D and 2D NMR spectra (Figure S2 and Table S1), in which a diagnostic signal (δ_H 4.26, δ_C 67.0) for an oxymethine was observed. Therefore, the planar structure of 2 was determined being a 6-hydroxy 1.

Since 2 possesses an additional chiral center to 1, 2 was employed for the determination of the absolute configuration. The desired chemical degradation protocol for the tetramic acid moiety was previously reported.^{17,18} According to the protocol, compound 2 was treated with sodium periodate followed by acid hydrolysis to afford an *N*-methylalanine residue. The absolute structure of the obtained *N*-methylalanine was determined to be *S* by the advanced Marfey's method^{19,20} (For detailed procedures, see the Supporting Information). Consequently, the absolute configuration at C-25 was established as *S*.

As a congener of 2, inactive compound 3 (there were no inhibitory activities at the concentration of 5 μ M, Figure 6) was isolated together with 1 and 2 (detailed isolation and structure determination of 3 are described in the Supporting Information). Since 3 was considered to be a good compound for the establishment of the absolute configuration of a series of these compounds, chemical degradation was performed on 3 (Scheme 1). To determine the absolute configuration of the remaining chiral centers, compounds 4 and 5 (partial racemic form) were obtained by alkaline hydrolysis of 3 followed by chromatographic

Scheme 1. Procedures for the Degradation of 3

Organic Letters

purification. For planar structure elucidation of **5**, see the Supporting Information.

Compound 4 was acid hydrolyzed (6 N HCl, 110 °C, 16 h), and the solution was dried with blown air. For the assignment of the stereochemistry at C-17, a chromatographic analysis determination using phenylglycine methyl ester (PGME) derivatives was applied.^{21,22} The hydrolysate was reacted with (*S*)- or (*R*)-PGME, and the amide products were analyzed by RP-HPLC–MS. The retention times of (*S*)- and (*R*)-PGME derivatives (t_R 7.4 and 8.0 min, respectively) were matched with those of corresponding (*S*)- and (*R*)-PGME derivatives of synthetic *N*,*N*-dimethyl-L-alanine standards, indicating that **6** is in the L-form. Thus, the absolute configuration of C-17 was established as *S*.

The absolute configuration of C-13 and C-14 in the threonine residue were determined as 13S and 14R by LC–MS analyses in the acid hydrolysate of 4 compared with those of the threonine standard derivatives (advanced Marfey's method, see the Supporting Information).¹⁹

To obtain 8 as a main component except for amino acid residues, the acid hydrolysate (6 N HCl, 110 °C, 16 h) of 4 was purified by RP-HPLC preparation. The molecular formula of 8 was revealed as $C_9H_{16}CINO_3$ by HRESIMS. The nitrosohydroxyamino functional group was converted into a chlorine atom whose existence was further supported by the intensity of the isotope peaks' ratio (3:1). The planar structure of 8 was established by the analysis of DQF-COSY and CT-HMBC spectra. COSY correlations from an oxymethine proton H-3 $(\delta_{\rm H/C} 3.63/82.6)$ to chlorinated methylene protons H₂-7 $(\delta_{\rm H/C}$ 3.56, 3.53/50.0) through nitrogen-substituted methine proton H-4 ($\delta_{\rm H/C}$ 3.42/57.9), aliphatic methylene protons H₂-5 ($\delta_{\rm H/C}$ 2.06, 1.59/38.9), and an oxymethine proton H-6 ($\delta_{\rm H/C}$ 3.99/ 71.7) and HMBC correlations from gem-methyl protons H₃-8 and H₃-9 ($\delta_{\rm H/C}$ 1.14/22.9 and 1.05/18.1, respectively) to an oxymethine carbon C-3, a quaternary carbon C-2, and a carbonyl carbon C-1 ($\delta_{\rm C}$ 182.5) were observed. The relatively low field shifted ¹³C chemical shift value against ordinal lactone or lactam functions along with the lack of low field shifted (acylated shift) ¹H chemical shift values at C-3 and C-6 in 8 were suitable to judge the presence of a γ -lactam ring (Figure S4 and Table S2). Thus, the planar structure of 8 was established to be a 5-(3chloro-2-hydroxypropyl)-4-hydroxy-3,3-dimethyl-2-pyrrolidinone.

The relative configuration of the C-3/C-4 axis in **8** was determined by NOESY (Figure 3). Strong NOESY correlations of H-3/H₃-8 and H-4/H₃-9 were observed, whereas the correlation of H-3/H₃-9 was observed weakly, which was indicative that H-4 is located on the same side as C-9 and the opposite side of H-3 and C-8 on the γ -lactam ring. Thus, the relative configurations of C-3 and C-4 were deduced as $3R^*$ and $4S^*$. The relative configuration of C-4/C-5/C-6 was established

Figure 3. Key NOESY correlations (arrow) and ${}^{1}H-{}^{1}H$ coupling constants of 8.

by the J-based configuration analysis using vicinal ${}^{1}\text{H}-{}^{1}\text{H}$ and long-range ${}^{1}\text{H}-{}^{13}\text{C}$ coupling constants.^{23,24} At the C-4/C-5 axis, a large coupling constant between H-4 and Hb-5 (8.0 Hz) indicated the anti orientation of H-4/Hb-5. A small ${}^{3}J_{\text{H-C}}$ coupling constant (${}^{3}J_{\text{Ha-5-C-3}} < 3$ Hz) obtained from the J-resolved HMBC-2²⁵ spectrum showed Ha-5 and C-3 are in the gauche orientation. These results revealed that C-3/C-6 and 4-N/Ha-5 are in anti orientations, as shown in Figure 4. For the C-

Figure 4. J-based configuration analysis of 8.

5/C-6 axis, the large ${}^{1}\text{H}-{}^{1}\text{H}$ coupling constant (7.5 Hz) between Hb-5 and H-6 and a small ${}^{2}J_{C-H}$ coupling constant (<3 Hz) between Ha-5 and C-6 inferred that C-4/C-7 and Ha-5/6-O are in anti orientations. Given these information, the relative configuration of **8** was deduced as $3R^*$, $4S^*$, $6R^*$.

Determination of the absolute configuration was attempted by derivatizing 8 with (*R*)- and (*S*)- α -methoxy- α -(trifluoromethyl)-phenylacetyl (MTPA) chloride and applying for the modified Mosher's method. Compound 8 was treated with (*R*)- and (*S*)-MTPACl in pyridine to give (*S*)- and (*R*)-MTPA diester derivatives, respectively. The stereochemical determination was based on the chemical shift differences of the protons as shown in Figure 5. The $\Delta\delta$ values ($\delta_{\rm S} - \delta_{\rm R}$) of the methyl protons of C-2

Figure 5. $\Delta \delta$ values $[\Delta \delta$ (in ppm) = $\delta_S - \delta_R$] obtained for the (S)- and (R)-MTPA diesters of 8.

(+0.08, + 0.21) showed positive, while those of H-4 (-0.03) and one of H₂-5 (-0.03) were negative, thus suggesting the 3*R*configuration. The positive $\Delta\delta$ value of one of H₂-5 (+0.05) and negative $\Delta\delta$ values of H₂-7 (-0.14, -0.16) were interpreted as the 6*R* configuration. Thus, the absolute configuration of **8** was consequently assigned to be 3*R*,4*S*,6*R*.

Compound 5 was degradated by sodium periodate to yield 2hydroxy-3-methylbutanoic acid (valinic acid, 9), whose absolute configuration was determined to be *S* by the chromatographic analyses of the PGME derivatives (see the Supporting Information). The retention times of (*R*)- and (*S*)-PGME derivatives of 9 (t_R 13.8 and 14.2 min, respectively) were matched with those of (*R*)- and (*S*)-PGME derivatives of authentic (*S*)-2-hydroxy-3-methylbutanoic acid. Therefore, the absolute configuration of C-8 of 5 was established to be *S*. Hence, the absolute configurations of a series of unique novel compounds in this study were defined as shown in Figure 1. Compounds 1 and 2 exhibited exceptionally potent specific inhibition against Foxo3a transcriptional activity in a cell-based reporter assay, while compound 3 possessed no detectable activity. The results are summarized in Figure 6, and IC_{50} values

Figure 6. Specific Inhibition of Foxo3a transcriptional activity by (a) JBIR-141 (1), (b) JBIR-142 (2), and (c) 3: (\bigcirc) Foxo3a, (\bigcirc) NF-kB, (\triangle) p53, (\blacktriangle) notch.

of 1 and 2 are 23.1 and 166.2 nM, respectively. As observed in Figure 6, 1 and 2 showed good selectivity against Foxo3a compared with other transcription factors NF- κ B, p53, and notch. Interestingly, 1 and 2 up-regulated NF- κ B transcriptional activity in contrast to Foxo3a. Cell viabilities almost did not changed during 24 h treatment with compounds (data not shown).

Cytotoxic activities were also evaluated using human ovarian adenocarcinoma SKOV-3, human malignant mesothelioma MESO-1, and human T-lymphoma Jurkat cell lines after 72 h treatment with compounds. IC₅₀ values of compounds **1**, **2**, and **3** were 11.7, 101, and 1094 nM in SKOV-3 cells, 89.8, 66.5, and 3353 nM in MESO-1 cells, and 4.41, 30.6, and 836 nM in Jurkat cells, respectively. As listed above, **1** and **2** showed strong anticancer activities.

Examination of their detailed biological activities and determination of the target molecule of these compounds by chemical biology strategies are now underway.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.5b02842.

Experimental details and characterization data (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: k-shinya@aist.go.jp.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported in part by a grant "Project focused on developing key technologies for discovering and manufacturing drugs for next-generation treatment and diagnosis" from the Ministry of Economy, Trade and Industry (METI) and in part by a grant "Project for Development of Innovative Research on Cancer Therapeutics (P-DIRECT)" from the Ministry of Education, Culture, Sports, Science and Technology (MEXT).

REFERENCES

(1) Eijkelenboom, A.; Burgering, B. M. T. Nat. Rev. Mol. Cell Biol. 2013, 14, 83–97.

(2) Morris, B. J.; Willcox, D. C.; Donlon, T. a.; Willcox, B. J. *Gerontology* **2015**, 515.

(3) Essafi, A.; Fernández de Mattos, S.; Hassen, Y. a M.; Soeiro, I.; Mufti, G. J.; Thomas, N. S. B.; Medema, R. H.; Lam, E. W.-F. *Oncogene* **2005**, *24*, 2317–2329.

(4) Fu, Z.; Tindall, D. J. Oncogene 2008, 27, 2312-2319.

(5) Daitoku, H.; Sakamaki, J. I.; Fukamizu, A. Biochim. Biophys. Acta, Mol. Cell Res. 2011, 1813, 1954–1960.

(6) Naka, K.; Hoshii, T.; Hirao, A. *Cancer Sci.* 2010, 101, 1577–1581.
(7) Miyamoto, K.; Araki, K. Y.; Naka, K.; Arai, F.; Takubo, K.; Yamazaki, S.; Matsuoka, S.; Miyamoto, T.; Ito, K.; Ohmura, M.; Chen, C.; Hosokawa, K.; Nakauchi, H.; Nakayama, K.; Nakayama, K. I.; Harada, M.; Motoyama, N.; Suda, T.; Hirao, A. *Cell Stem Cell* 2007, 1, 101–112.

(8) Naka, K.; Hoshii, T.; Muraguchi, T.; Tadokoro, Y.; Ooshio, T.; Kondo, Y.; Nakao, S.; Motoyama, N.; Hirao, A. *Nature* **2010**, *463*, 676–680.

(9) Sykes, S. M.; Lane, S. W.; Bullinger, L.; Kalaitzidis, D.; Yusuf, R.; Saez, B.; Ferraro, F.; Mercier, F.; Singh, H.; Brumme, K. M.; Acharya, S. S.; Schöll, C.; Tothova, Z.; Attar, E. C.; Fröhling, S.; Depinho, R. A.; Armstrong, S. A.; Gilliland, D. G.; Scadden, D. T. *Cell* **2011**, *146*, 697– 708.

(10) Tenbaum, S. P.; Ordóñez-Morán, P.; Puig, I.; Chicote, I.; Arqués, O.; Landolfi, S.; Fernández, Y.; Herance, J. R.; Gispert, J. D.; Mendizabal, L.; Aguilar, S.; Cajal, S. R. Y.; Schwartz, S.; Vivancos, A.; Espín, E.; Rojas, S.; Baselga, J.; Tabernero, J.; Muñoz, A.; Palmer, H. G. *Nat. Med.* **2012**, *18*, 892–901.

(11) Kawahara, T.; Hwang, J.-H.; Izumikawa, M.; Hashimoto, J.; Takagi, M.; Shin-Ya, K. J. Nat. Prod. **2012**, 75, 1814–1818.

(12) Nishio, M.; Hasegawa, M.; Suzuki, K.; Sawada, Y.; Hook, D. J.; Oki, T. J. Antibiot. **1993**, 46, 193–195.

(13) Fushimi, S.; Nishikawa, S.; Mito, N.; Ikemoto, M.; Sasaki, M.; Seto, H. J. Antibiot. **1989**, *42*, 1370–1378.

(14) Strazzolini, P.; Malabarba, A.; Ferrari, P.; Grandi, M.; Cavalleri, B. J. Med. Chem. **1984**, 27, 1295–1299.

(15) Strazzolini, P.; Dall'Arche, M.; Zossi, M.; Pavsler, A. Eur. J. Org. Chem. 2004, 4710–4716.

(16) Furihata, K.; Seto, H. Tetrahedron Lett. 1998, 39, 7337-7340.

(17) Ikeda, H.; Matsumori, N.; Ono, M.; Suzuki, A.; Isogai, A.; Nagasawa, H.; Sakuda, S. *J. Org. Chem.* **2000**, *65*, 438–444.

(18) Sawa, R.; Takahashi, Y.; Hashizume, H.; Sasaki, K.; Ishizaki, Y.; Umekita, M.; Hatano, M.; Abe, H.; Watanabe, T.; Kinoshita, N.; Homma, Y.; Hayashi, C.; Inoue, K.; Ohba, S.; Masuda, T.; Arakawa, M.; Kobayashi, Y.; Hamada, M.; Igarashi, M.; Adachi, H.; Nishimura, Y.; Akamatsu, Y. *Chem. - Eur. J.* **2012**, *18*, 15772–15781.

(19) Marfey, P. Carlsberg Res. Commun. 1984, 49, 591-596.

(20) Fu, P.; Jamison, M.; La, S.; MacMillan, J. B. Org. Lett. 2014, 16, 5656–5659.

(21) Nagai, Y.; Kusumi, T. Tetrahedron Lett. 1995, 36, 1853–1856.

(22) Um, S.; Choi, T. J.; Kim, H.; Kim, B. Y.; Kim, S.-H.; Lee, S. K.; Oh,

K.-B.; Shin, J.; Oh, D.-C. J. Org. Chem. 2013, 78, 12321-12329.

(23) Matsumori, N.; Kaneno, D.; Murata, M.; Nakamura, H.; Tachibana, K. *J. Org. Chem.* **1999**, *64*, 866–876.

(24) Kawahara, T.; Izumikawa, M.; Takagi, M.; Shin-Ya, K. Org. Lett. **2012**, *14*, 4434–4437.

(25) Furihata, K.; Seto, H. Tetrahedron Lett. 1999, 40, 6271-6275.